Classification of the myoelectric signal using time-frequency based representations.
نویسندگان
چکیده
An accurate and computationally efficient means of classifying surface myoelectric signal patterns has been the subject of considerable research effort in recent years. Effective feature extraction is crucial to reliable classification and, in the quest to improve the accuracy of transient myoelectric signal pattern classification, an ensemble of time-frequency based representations are proposed. It is shown that feature sets based upon the short-time Fourier transform, the wavelet transform, and the wavelet packet transform provide an effective representation for classification, provided that they are subject to an appropriate form of dimensionality reduction.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملTime-frequency Representation for Classification of the Transient Myoelectric Signal
An accurate and computationally efficient means of classifying myoelectric signal (MES) patterns has been the subject of considerable research effort in recent years. Effective feature extraction is crucial to reliable classification and, in the quest to improve the accuracy of transient MES pattern classification, many forms of signal representation have been suggested. It is shown that featur...
متن کاملComplex feature analysis of center of pressure signal for age-related subject classification
Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical engineering & physics
دوره 21 6-7 شماره
صفحات -
تاریخ انتشار 1999